

Close

Quit

Strong Law of large number Law of the iterated logarithm for nonlinear probabilities

ZENGJING CHEN

SHANDONG UNIVERSITY

July 5, 2010

Outline

- ♦ History of LLN and LIL for probabilities
- ♦ Why to study LLN and LIL for capacities
- **Nonlinear probabilities and nonlinear expectations**
- ♦ Main results
- ♦ Applications

Main Question Main Question Reports

Main Question

0.1. History of LLN and LIL for probability

Law of large number(LLN):

(1) Brahmagupta (598-668), Cardano (1501-1576)

(2) Jakob Bernoulli(1713), Poisson (1835)

(3) Chebyshev, Markov, Borel(1909), Cantelli and Kolmogorov(IID).

Law of iterated logarithm(LIL):

(1) Khintchine(1924) for Bernoulli model

Kolmogorov(1929), Hartman–Wintner(1941) (IID)

(2) Levy(1937) for Martingale

(3) Strassen(1964) for functional random variables.

Main Question Main Question Reports

Main Question

Home Page Title Page ▲ ↓ ↓ Page 4 of 21 Go Back Full Screen Close

Quit

(b)

0.2. Strong LLN and LIL for probabilities

Assumption: $\{X_i\}$ IID, $S_n/n := \sum_{i=1}^n X_i$, $EX_1 = \mu_i$ Then **Theorem 1:**Kolmogorov:

 $P(\lim_{n\to\infty}S_n/n=\mu)=1$

Theorem 2: Hartman–Wintner(1941): If $EX_1 = 0$, $EX_1^2 = -2$, Then (a)

$$P\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=\right) = 1$$

$$P\left(\liminf_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=-\right)=1$$

(c) Suppose that $C({x_n})$ is the cluster set of a sequence of ${x_n}$ in R, then

$$P(C(\{ : S_n() / \sqrt{2n \log \log n}\}) = [-,]) = 1.$$

Main Question Main Question Reports

0.3. Why to study LLN and LIL in Finance

THEOREM 1 (Black-Scholes, 1973:) In complete markets, there exists a unique probability measure Q, such that the pricing of option at strike date T is given by $E_Q[e^{-rT}]$. Where r = 0 is interest rate of bond.

Monte Carlo, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} X_i = E_Q[$].

(Linear) expectation \leftarrow Black-Scholes \rightarrow Complete Markets

 $\inf_{Q \in \mathcal{P}} E_Q[], \sup_{Q \in \mathcal{P}} E_Q[] \iff$ Incomplete Markets, Q is not unique, SET \mathcal{P} .

Super-pricing: $\inf_{Q \in \mathcal{P}} E_Q[]$, $\sup_{Q \in \mathcal{P}} E_Q[]$. Nonlinear expectation! $\lim_{n \to \infty} S_n / n = ?$

Main Question Main Question Reports

0.4. Bernoulli Trials with ambiguity

Bernoulli Trials:

Repeated independent trials are called Bernoulli trials if there are only two possible outcomes for each trial and their probabilities **REMAIN** (are no longer) the same throughout the trials.

Let $X_i = 1$ if head occurs and $X_i = 0$ if tail occurs.

$$P(X_i = 1) = , P(X_i = 0) = 1 - , S_n := \sum_{i=1}^n X_i$$

If = 1/2 (Unbalance), LLN stats

$$P\left(\lim_{n\to\infty}S_n/n=1/2\right)=1$$

Or

$$\lim_{n\to\infty}S_n/n=1/2\quad a.s\quad (P)$$

Main Question Main Question Reports

If a coin is balance. $P(X_i = 1) = \in [1/3, 1/2]$. Let $\mathcal{P} := \{P, \in [1/3, 1/2]\}$. $E_P[X_i] = \text{Unknown},$ But $\max_{P \in \mathcal{P}} E_P[X_i] = 1/2$, $\min_{P \in \mathcal{P}} E_P[X_i] = 1/3$. Question: what is the limit $S_n/n \rightarrow$? (a) Capacity: If $V(A) := \max_{P \in \mathcal{P}} P(A)$, $V(A) := \min_{P \in \mathcal{P}} P(A)$ Can S_n/n converge to $\max_{P \in \mathcal{P}} E_P[X_i]$ or $\min_{P \in \mathcal{P}} E_P[X_i]$ a.s. V or V? (b) The relation between the set of limit points of S_n/n and the interval of $\min_{P \in \mathcal{P}} E_P[X_i]$ and $\max_{P \in \mathcal{P}} E_P[X_i]$.

Main Question Main Question Reports

Main Question

0.5. Linear and Nonlinear Expectations

Kolmogorov: Linear expectation: $P : \mathcal{F} \to [0, 1], P(A) = E[I_A]$

 $P(A + B) = P(A) + P(B), A \cap B = \emptyset \Leftrightarrow E[+] = E[] + E[]$

Expectation is a linear functional of random variable.

Nonlinear probability(capacity): $V(\cdot) : \mathcal{F} \to [0, 1]$ but

 $V(A + B) \neq V(A) + V(B)$, even $A \cap B = \emptyset$.

Nonlinear expectation: $\mathbb{E}(\)$ is nonlinear functional in the sense of

 $\mathbb{E}[+] \neq \mathbb{E}[] + \mathbb{E}[].$

Capacity $V(A) = \mathbb{E}[I_A]$ is nonlinear.

Main Question Main Question Reports

Modes of nonlinear expectations and capacity

(1)Choquet expectations (Choquet 1953, physics)

$$C_{V}[X] := \int_{0}^{\infty} V(X \ge t) dt + \int_{-\infty}^{0} [V(X \ge t) - 1] dt.$$

(2)g-expectation (Peng 1997)

(3) Sub-linear expectation(Peng 2007).

(a)Monotonicity: $X \ge Y$ implies $\mathbb{E}[X] \ge \mathbb{E}[Y]$. (b)Constant preserving: $\mathbb{E}[c] = c, \forall c \in \mathbb{R}$. (c)Sub-additivity: $\mathbb{E}[X + Y] \le \mathbb{E}[X] + \mathbb{E}[Y]$. (d)Positive homogeneity: $\mathbb{E}[-X] = -\mathbb{E}[X], \forall \ge 0$.

(1) Distorted probability measure: $V(A) = g(P(A)), g : [0, 1] \rightarrow [0, 1].$ (2) 2-alternating capacity: $V(A \cup B) \leq V(A) + V(B) - V(A \cap B)$ (3) $V(A) = \max_{P \in \mathcal{P}} P(A), \mathcal{P}$ set of Probability.

Main Question

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Clos

Main Question

3. Definition: capacity and nonlinear expectation

(1) Probability space : $(, \mathcal{F}, P) \Rightarrow (, \mathcal{F}, P)$. Where $\mathcal{P} := \{P : \in \}$. (2) Capacity: $P \Rightarrow (v, V)$, where

$$V(A) = \inf_{Q \in \mathcal{P}} Q(A), \quad V(A) = \sup_{Q \in \mathcal{P}} Q(A).$$

(3)Property:

 $V(A) + V(A^{c}) \geq 1$, $V(A) + V(A^{c}) \leq 1$

but

$$V(A) + V(A^{c}) = 1.$$

(4) Nonlinear expectations: Lower-upper expectation $\mathcal{E}[\]$ and $\mathbb{E}[\]$

$$\mathcal{E}[] = \inf_{Q \in \mathcal{P}} E_Q[], \qquad \mathbb{E}[] = \sup_{Q \in \mathcal{P}} E_Q[]$$

Main Question

Home Page

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full <u>Screen ●Close</u>

Main Question

V(AB) = V(A)V(B), v(AB) = v(A)v(B)

Theorem (Epstein, 02, Marinacci, 99, 05). Bounded, Polish, $C_{V}[X_{i}] = \mu$, $C_{V}[X_{i}] = \overline{\mu}$. { X_{i} } IID, then

$$v\left(\underline{\mu} \leq \liminf_{n \to \infty} S_n / n \leq \limsup_{n \to \infty} S_n / n \leq \underline{\mu}\right) = 1.$$

Where *V* is totally 2-alternating $V(A \bigcup B) \le V(A) + V(B) - V(AB)$, here C_V and C_V is Choquet are integrals. Note $C_V[X] < \mathcal{E}[X] < \mathbb{E}[X] < C_V[X], \forall X$.

Main Question Home Page Title Page III Page III Page III Screen Close Quit

4.1. Limit theorem 1

Theorem: If $\{X_i\}$ is IID, then $\frac{S_n}{n}$ converges as $n \to \infty$ a.s. *v* if and only if $\mathcal{E}[X_1] = \mathbb{E}[X_1].$

In this case,

 $\lim S_n/n = \mathcal{E}[X_1], \quad a.s. \quad v.$

(11)

5. Main results

THEOREM 3 $\{X_i\}_{i=1}^n$ IID under nonlinear expectation \mathbb{E} . Set $\overline{\mu} := \mathbb{E}[X_i]$, $\underline{\mu} := \mathcal{E}[X_i]$ and $S_n := \sum_{i=1}^n X_i$. If $\mathbb{E}[|X_i|^{1+}] < \infty$ for > 0. Then (I)

 $v (\in : \underline{\mu} \le \liminf_{n \to \infty} S_n() / n \le \limsup_{n \to \infty} S_n / n() \le \overline{\mu}) = 1.$

$$V (\in : \limsup_{n \to \infty} S_n()/n = \mu) = 1$$
$$V (\in : \liminf_{n \to \infty} S_n()/n = \mu) = 1.$$

(111) Suppose that $C(\{S_n()/n\})$ is the cluster set of a sequence of $\{S_n()/n\}$, then

 $V(\in C(\{S_n(n)/n\}) = [\underline{\mu}, \overline{\mu}]) = 1$

(1)

(II)

6. Law of iterated logarithm for sub-linear expectations

THEOREM 4 { X_n } bounded IID. $\mathbb{E}[X_1] = \mathcal{E}[X_1] = 0, -2 := \mathbb{E}[X_1^2], -2 := \mathcal{E}[X_1^2]$. Let $S_n := \sum_{i=1}^n X_i, a_n := \sqrt{2n \lg \lg n}$, then

$$v\left(-\leq \limsup_{n}\frac{S_{n}}{a_{n}}\leq -\right)=1;$$

$$\sqrt{\left(-- \leq \liminf_{n} \frac{S_n}{a_n} \leq -\right)} = 1.$$

(III) Suppose that $C(\{x_n\})$ is the cluster set of a sequence of $\{x_n\}$ in R, then

$$\mathcal{V}\left(C(\{S_n/\sqrt{2n\log\log n}\}) \supset (-_,_)\right) = 1.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Main Question Main Question Reports

Main Question

Quit

7. Key of proof

THEOREM 5 Suppose is distributed to G normal $N(0; [_^2, -^2])$, where $0 < _ \le - < \infty$. Let be a bounded continuous function. Furthermore, if is a positively even function, then, for any $b \in R$,

 $e^{-\frac{b^2}{2-2}}\mathcal{E}[()] \leq \mathcal{E}[(-b)].$

Main Question Main Question Reports

8. Application

Main Question
Home Page
Title Page

Itle Page
Itle Page
Itle Page
Itle Page
Itle Page
Itle Page Itle of 21
Go Back
Full Screen
Close
Quit

Total 100 balls in box, Black + Red + Yellow = 100, Black = Red, Yellow \in [30, 40], then $P_Y \in$ [3/10, 4/10]. Take a ball from this box, $X_i = 1$, if ball is black, $X_i = 0$, if ball is Yellow, $X_i = -1$ for red. $S_n = \sum_{i=1}^n X_i$, is the excess frequency of black than Red

Then

a)
$$\mathbb{E}[X_i] = \mathcal{E}[X_i] = 0$$

(b)

$$\sqrt{6/10} \le \limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \lg \lg n}} \le \sqrt{7/10}.$$

Page <mark>21</mark> of <mark>21</mark>

Full Screen

Close

Quit

Thank you !